Java随机数之ThreadLocalRandom学习
[TOC]
概述
随机数生成是一个非常常见的操作,而且 Java 也提供了 java.util.Random 类用于生成随机数,而且呢,这个类也是线程安全的,就是有一点不好,在多线程下,它的性能不佳。
为什么多线程下,Random的性能不佳?
因为,它采用了多个线程共享一个 Random 实例。这样就会导致多个线程争用。
为了解决这个问题,Java 7 引入了 java.util.concurrent.ThreadLocalRandom 类,用于在多线程环境中生成随机数。
本文接下来的部分,就来看看如何 ThreadLocalRandom 如何执行以及如何在实际应用程序中使用它。
ThreadLocalRandom Via Random
ThreadLocalRandom 是 ThreadLocal 类和 Random 类的组合,它与当前线程隔离,通过简单地避免对 Random 对象的任何并发访问,在多线程环境中实现了更好的性能。
也就是说,相比于 java.util.Random 类全局的提供随机数生成, 使用 ThreadLocalRandom,一个线程获得的随机数不受另一个线程的影响。
另一个与 Random 类不同的是,ThreadLocalRandom 不支持显式设置种子。因为它重写了从 Random 继承的 setSeed(long seed) 方法,会在调用时始终抛出 UnsupportedOperationException。
接下来我们看看如何使用 ThreadLocalRandom 生成随机 int、long 和 double 值。
使用 ThreadLocalRandom 生成随机数
根据 Oracle 文档,我们只需要调用 ThreadLocalRandom.current() 方法,就能返回当前线程的 ThreadLocalRandom 实例。然后,我们可以通过实例的相关方法来生成随机值。
比如下面的代码,生成一个没有任何边界的随机 int 值
1 | int unboundedRandomValue = ThreadLocalRandom.current().nextInt()); |
其实是有边界的,它的边界就是 int 的边界。
接下来,我们看看如何生成有边界的随机 int 值,这意味着我们需要传递边界下限和边界上限作为参数
1 | int boundedRandomValue = ThreadLocalRandom.current().nextInt(0, 100); |
请注意,这是一个左闭右开区间,也就是说,上面的实例生成的随机数在 [0,100) 之间,包含了 0 但不包含 100。
同样的,我们可以通过调用 nextLong() 和 nextDouble() 方法生成 long 和 double 类型的随机值,调用方式与上面示例中 nextInt() 类似。
Java 8 还添加了 nextGaussian() 方法从生成器序列中生成下一个正态分布的值,其值范围在 0.0 和 1.0 之间。
与 Random 方法类似,ThreadLocalRandom 也提供了 doubles() 、ints() 和 longs() 方法生成一序列流式 ( stream ) 的随机值。
使用 JMH 比较 ThreadLocalRandom 和 Random
记下来,我们看看如何在多线程环境中分别使用这两个类生成随机值,然后再使用 JMH 比较它们的性能。
首先,我们创建一个示例,其中所有线程共享一个 Random 实例。
1 | ExecutorService executor = Executors.newWorkStealingPool(); |
上面的代码中,我们把使用 Random 实例生成随机值的任务提交给 ExecutorService 。
然后,我们使用 JMH 基准测试来检查上面代码的性能
1 | # Run complete. Total time: 00:00:36 |
接着,类似地,我们使用 ThreadLocalRandom 而不是 Random 实例
1 | ExecutorService executor = Executors.newWorkStealingPool(); |
上面的代码,为线程池中的每个线程单独使用了一个 ThreadLocalRandom 实例。
下面是使用 JMH 对 ThreadLocalRandom 的测试结果
1 | # Run complete. Total time: 00:00:36 |
通过 JMH 的测试结果中可以看出,使用 Random 生成 1000 个随机值所花费的平均时间是 772 微秒,但使用 ThreadLocalRandom 只花了 625 微秒。嗯,差距不是很大,但好歹也是有差距的,因为生成 1000 个随机数是瞬间的事情。
因此,我们可以得出结论,ThreadLocalRandom 在高度并发的环境中更有效。