[TOC]

概述

目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割,它将目标的分割和识别合二为一,其准确性和实时性是整个系统的一项重要能力。 目标检测是计算机视觉和数字图像处理的一个热门方向,广泛应用于机器人导航、智能视频监控、工业检测、航空航天等诸多领域,通过计算机视觉减少对人力资本的消耗,具有重要的现实意义。因此,目标检测也就成为了近年来理论和应用的研究热点,它是图像处理和计算机视觉学科的重要分支,也是智能监控系统的核心部分,同时目标检测也是泛身份识别领域的一个基础性的算法,对后续的人脸识别、步态识别、人群计数、实例分割等任务起着至关重要的作用。由于深度学习的广泛运用,目标检测算法得到了较为快速的发展。

Ground Truth

Ground Truth(GT) 代表通过人工等方式为数据赋予的真实标签,用于训练模型与验证、测试模型性能。

Bounding Box (bbox)

目标检测需要定位图像中的目标位置和类别,反映在数据上的形式就是使用矩形框框出目标区域,并标记类别标签,这就是目标检测的Bounding Box ,标注与算法输出都使用该形式,以便机器学习并对比实验结果。

img

ROI (region of interest)

感兴趣区域,与bbox概念类似,定义图像中我们感兴趣的部分,交给机器进行学习。

img

IOU (Intersection over Union)