1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
| public class ThreadLocal<T> {
private final int threadLocalHashCode = nextHashCode();
private static AtomicInteger nextHashCode = new AtomicInteger();
private static final int HASH_INCREMENT = 0x61c88647;
private static int nextHashCode() { return nextHashCode.getAndAdd(HASH_INCREMENT); }
protected T initialValue() { return null; }
public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) { return new SuppliedThreadLocal<>(supplier); }
/** * Creates a thread local variable. * @see #withInitial(java.util.function.Supplier) */ public ThreadLocal() { }
public T get() { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) { ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) { @SuppressWarnings("unchecked") T result = (T)e.value; return result; } } return setInitialValue(); }
private T setInitialValue() { T value = initialValue(); Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); return value; }
/** * 从set方法我们可以看到,首先获取到了当前线程t,然后调用getMap获取ThreadLocalMap, * 如果map存在,就拿当前的ThreadLocal对象作为Key,要存储的对象作为value存到map里面去。如果该Map不存在,则初始化一个。 * @param value the value to be stored in the current thread's copy of * this thread-local. */ public void set(T value) { Thread t = Thread.currentThread(); // ThreadLocalMap是什么,getMap方法又是如何实现的。 // 使用当前的线程Thread.currentThread()获取ThreadLocalMap. // 其实就是获取thread.threadLocals对象
// 这个地方,我我们可以好好分析一下。 // 我们使用当前线程来获取ThreadLocalMap ThreadLocalMap map = getMap(t); if (map != null) // 着重你看一下,ThreadLocal对象里面获取ThreadLocalMap对象存储的Key-Value对象 // Key其实就是当前ThreadLocal对象。说明什么?? // 说明每个ThreadLocal对象只能存储一个变量值 map.set(this, value); else createMap(t, value); }
public void remove() { ThreadLocalMap m = getMap(Thread.currentThread()); if (m != null) m.remove(this); }
ThreadLocalMap getMap(Thread t) { return t.threadLocals; }
void createMap(Thread t, T firstValue) { // 没有这个ThreadLocals的关联对象 // 则我们进行第一次进行创建 t.threadLocals = new ThreadLocalMap(this, firstValue); }
static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) { return new ThreadLocalMap(parentMap); }
T childValue(T parentValue) { throw new UnsupportedOperationException(); }
static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {
private final Supplier<? extends T> supplier;
SuppliedThreadLocal(Supplier<? extends T> supplier) { this.supplier = Objects.requireNonNull(supplier); }
@Override protected T initialValue() { return supplier.get(); } }
/** * * 我们研究一下这个ThreadLocalMap的数据结构 * 由于ThreadLocalMap的生命周期跟Thread一样长,如果没有手动删除对应key就会导致内存泄漏,我觉得是这种数据结构导致,会产生内存溢出的问题 */ static class ThreadLocalMap {
/** * The entries in this hash map extend WeakReference, using * its main ref field as the key (which is always a * ThreadLocal object). Note that null keys (i.e. entry.get() * == null) mean that the key is no longer referenced, so the * entry can be expunged from table. Such entries are referred to * as "stale entries" in the code that follows. * * 为了应对非常大和长时间的用途,哈希表使用弱引用的 key。 * * ThreadLocal为什么会内存泄漏??? * ThreadLocalMap使用ThreadLocal的弱引用作为key,如果一个ThreadLocal没有外部强引用来引用它, * 那么系统 GC 的时候,这个ThreadLocal势必会被回收, * 这样一来,ThreadLocalMap中就会出现key为null的Entry,就没有办法访问这些key为null的Entry的value, * 如果当前线程再迟迟不结束的话, * 这些key为null的Entry的value就会一直存在一条强引用链:Thread Ref -> Thread -> ThreaLocalMap -> Entry -> value永远无法回收, * 造成内存泄漏。 */ static class Entry extends WeakReference<ThreadLocal<?>> { /** The value associated with this ThreadLocal. */ Object value;
Entry(ThreadLocal<?> k, Object v) { super(k); value = v; } }
/** * The initial capacity -- MUST be a power of two. */ private static final int INITIAL_CAPACITY = 16;
/** * The table, resized as necessary. * table.length MUST always be a power of two. */ private Entry[] table;
/** * The number of entries in the table. */ private int size = 0;
/** * The next size value at which to resize. */ private int threshold; // Default to 0
/** * Set the resize threshold to maintain at worst a 2/3 load factor. */ private void setThreshold(int len) { threshold = len * 2 / 3; }
/** * Increment i modulo len. */ private static int nextIndex(int i, int len) { return ((i + 1 < len) ? i + 1 : 0); }
/** * Decrement i modulo len. */ private static int prevIndex(int i, int len) { return ((i - 1 >= 0) ? i - 1 : len - 1); }
/** * Construct a new map initially containing (firstKey, firstValue). * ThreadLocalMaps are constructed lazily, so we only create * one when we have at least one entry to put in it. */ ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) { table = new Entry[INITIAL_CAPACITY]; int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1); table[i] = new Entry(firstKey, firstValue); size = 1; setThreshold(INITIAL_CAPACITY); }
/** * Construct a new map including all Inheritable ThreadLocals * from given parent map. Called only by createInheritedMap. * * @param parentMap the map associated with parent thread. */ private ThreadLocalMap(ThreadLocalMap parentMap) { Entry[] parentTable = parentMap.table; int len = parentTable.length; setThreshold(len); table = new Entry[len];
for (int j = 0; j < len; j++) { Entry e = parentTable[j]; if (e != null) { @SuppressWarnings("unchecked") ThreadLocal<Object> key = (ThreadLocal<Object>) e.get(); if (key != null) { Object value = key.childValue(e.value); Entry c = new Entry(key, value); int h = key.threadLocalHashCode & (len - 1); while (table[h] != null) h = nextIndex(h, len); table[h] = c; size++; } } } }
/** * Get the entry associated with key. This method * itself handles only the fast path: a direct hit of existing * key. It otherwise relays to getEntryAfterMiss. This is * designed to maximize performance for direct hits, in part * by making this method readily inlinable. * * @param key the thread local object * @return the entry associated with key, or null if no such */ private Entry getEntry(ThreadLocal<?> key) { int i = key.threadLocalHashCode & (table.length - 1); Entry e = table[i]; if (e != null && e.get() == key) return e; else return getEntryAfterMiss(key, i, e); }
/** * Version of getEntry method for use when key is not found in * its direct hash slot. * ThreadLocalMap中考虑到可能造成内存泄露问题: * 加上了一些防护措施:在ThreadLocal的get(),set(),remove()的时候都会清除线程ThreadLocalMap里所有key为null的value。 * 但是这些被动的预防措施并不能保证不会内存泄漏: * * * @param key the thread local object * @param i the table index for key's hash code * @param e the entry at table[i] * @return the entry associated with key, or null if no such */ private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) { Entry[] tab = table; int len = tab.length;
while (e != null) { ThreadLocal<?> k = e.get(); if (k == key) return e; if (k == null) expungeStaleEntry(i); else i = nextIndex(i, len); e = tab[i]; } return null; }
/** * Set the value associated with key. * * @param key the thread local object * @param value the value to be set */ private void set(ThreadLocal<?> key, Object value) {
// We don't use a fast path as with get() because it is at // least as common to use set() to create new entries as // it is to replace existing ones, in which case, a fast // path would fail more often than not.
// Table是ThreadLocalMap的entry数组 Entry[] tab = table; int len = tab.length; int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { ThreadLocal<?> k = e.get();
if (k == key) { e.value = value; return; }
if (k == null) { replaceStaleEntry(key, value, i); return; } }
tab[i] = new Entry(key, value); int sz = ++size; if (!cleanSomeSlots(i, sz) && sz >= threshold) rehash(); }
/** * Remove the entry for key. */ private void remove(ThreadLocal<?> key) { Entry[] tab = table; int len = tab.length; int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { if (e.get() == key) { e.clear(); expungeStaleEntry(i); return; } } }
/** * Replace a stale entry encountered during a set operation * with an entry for the specified key. The value passed in * the value parameter is stored in the entry, whether or not * an entry already exists for the specified key. * * As a side effect, this method expunges all stale entries in the * "run" containing the stale entry. (A run is a sequence of entries * between two null slots.) * * @param key the key * @param value the value to be associated with key * @param staleSlot index of the first stale entry encountered while * searching for key. */ private void replaceStaleEntry(ThreadLocal<?> key, Object value, int staleSlot) { Entry[] tab = table; int len = tab.length; Entry e;
// Back up to check for prior stale entry in current run. // We clean out whole runs at a time to avoid continual // incremental rehashing due to garbage collector freeing // up refs in bunches (i.e., whenever the collector runs). int slotToExpunge = staleSlot; for (int i = prevIndex(staleSlot, len); (e = tab[i]) != null; i = prevIndex(i, len)) if (e.get() == null) slotToExpunge = i;
// Find either the key or trailing null slot of run, whichever // occurs first for (int i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { ThreadLocal<?> k = e.get();
// If we find key, then we need to swap it // with the stale entry to maintain hash table order. // The newly stale slot, or any other stale slot // encountered above it, can then be sent to expungeStaleEntry // to remove or rehash all of the other entries in run. if (k == key) { e.value = value;
tab[i] = tab[staleSlot]; tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists if (slotToExpunge == staleSlot) slotToExpunge = i; cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); return; }
// If we didn't find stale entry on backward scan, the // first stale entry seen while scanning for key is the // first still present in the run. if (k == null && slotToExpunge == staleSlot) slotToExpunge = i; }
// If key not found, put new entry in stale slot tab[staleSlot].value = null; tab[staleSlot] = new Entry(key, value);
// If there are any other stale entries in run, expunge them if (slotToExpunge != staleSlot) cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); }
/** * Expunge a stale entry by rehashing any possibly colliding entries * lying between staleSlot and the next null slot. This also expunges * any other stale entries encountered before the trailing null. See * Knuth, Section 6.4 * * @param staleSlot index of slot known to have null key * @return the index of the next null slot after staleSlot * (all between staleSlot and this slot will have been checked * for expunging). */ private int expungeStaleEntry(int staleSlot) { Entry[] tab = table; int len = tab.length;
// expunge entry at staleSlot tab[staleSlot].value = null; tab[staleSlot] = null; size--;
// Rehash until we encounter null Entry e; int i; for (i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { ThreadLocal<?> k = e.get(); if (k == null) { e.value = null; tab[i] = null; size--; } else { int h = k.threadLocalHashCode & (len - 1); if (h != i) { tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until // null because multiple entries could have been stale. while (tab[h] != null) h = nextIndex(h, len); tab[h] = e; } } } return i; }
/** * Heuristically scan some cells looking for stale entries. * This is invoked when either a new element is added, or * another stale one has been expunged. It performs a * logarithmic number of scans, as a balance between no * scanning (fast but retains garbage) and a number of scans * proportional to number of elements, that would find all * garbage but would cause some insertions to take O(n) time. * * @param i a position known NOT to hold a stale entry. The * scan starts at the element after i. * * @param n scan control: {@code log2(n)} cells are scanned, * unless a stale entry is found, in which case * {@code log2(table.length)-1} additional cells are scanned. * When called from insertions, this parameter is the number * of elements, but when from replaceStaleEntry, it is the * table length. (Note: all this could be changed to be either * more or less aggressive by weighting n instead of just * using straight log n. But this version is simple, fast, and * seems to work well.) * * @return true if any stale entries have been removed. */ private boolean cleanSomeSlots(int i, int n) { boolean removed = false; Entry[] tab = table; int len = tab.length; do { i = nextIndex(i, len); Entry e = tab[i]; if (e != null && e.get() == null) { n = len; removed = true; i = expungeStaleEntry(i); } } while ( (n >>>= 1) != 0); return removed; }
/** * Re-pack and/or re-size the table. First scan the entire * table removing stale entries. If this doesn't sufficiently * shrink the size of the table, double the table size. */ private void rehash() { expungeStaleEntries();
// Use lower threshold for doubling to avoid hysteresis if (size >= threshold - threshold / 4) resize(); }
/** * Double the capacity of the table. */ private void resize() { Entry[] oldTab = table; int oldLen = oldTab.length; int newLen = oldLen * 2; Entry[] newTab = new Entry[newLen]; int count = 0;
for (int j = 0; j < oldLen; ++j) { Entry e = oldTab[j]; if (e != null) { ThreadLocal<?> k = e.get(); if (k == null) { e.value = null; // Help the GC } else { int h = k.threadLocalHashCode & (newLen - 1); while (newTab[h] != null) h = nextIndex(h, newLen); newTab[h] = e; count++; } } }
setThreshold(newLen); size = count; table = newTab; }
/** * Expunge all stale entries in the table. */ private void expungeStaleEntries() { Entry[] tab = table; int len = tab.length; for (int j = 0; j < len; j++) { Entry e = tab[j]; if (e != null && e.get() == null) expungeStaleEntry(j); } } } }
|