[TOC]

概述

概述

  • (1)np.linalg.inv():矩阵求逆
  • (2)np.linalg.det():矩阵求行列式(标量)

np.linalg.norm

顾名思义,linalg=linear+algebralinalg=linear+algebra,norm则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar):

首先help(np.linalg.norm)查看其文档:

1
norm(x, ord=None, axis=None, keepdims=False)

这里我们只对常用设置进行说明,xx表示要度量的向量,ordord表示范数的种类,

参数 说明 计算方法
默认 二范数:ℓ2ℓ2 x21+x22+…+x2n‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√x12+x22+…+xn2
ord=2 二范数:ℓ2ℓ2 同上
ord=1 一范数:ℓ1ℓ1 |x1|+|x2|+…+|xn||x1|+|x2|+…+|xn|
ord=np.inf 无穷范数:ℓ∞ℓ∞ max(|xi|)max(|xi|)