[TOC]
文章参考:https://blog.csdn.net/m0_37264397/article/details/124184227
param文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
| 7767517 33 34 Convolution conv1 1 1 data conv1 0=16 1=3 2=1 3=2 4=0 5=1 6=144 BatchNorm conv1/bn1 1 1 conv1 conv1_conv1/bn1 0=16 Scale conv1/bn2 1 1 conv1_conv1/bn1 conv1_conv1/bn2 0=16 1=1 ReLU relu1 1 1 conv1_conv1/bn2 conv1_relu1 Convolution conv2 1 1 conv1_relu1 conv2 0=24 1=3 2=1 3=2 4=0 5=1 6=3456 BatchNorm conv2/bn1 1 1 conv2 conv2_conv2/bn1 0=24 Scale conv2/bn2 1 1 conv2_conv2/bn1 conv2_conv2/bn2 0=24 1=1 ReLU relu2 1 1 conv2_conv2/bn2 conv2_relu2 Convolution conv3 1 1 conv2_relu2 conv3 0=24 1=1 2=1 3=1 4=0 5=1 6=576 BatchNorm conv3/bn1 1 1 conv3 conv3_conv3/bn1 0=24 Scale conv3/bn2 1 1 conv3_conv3/bn1 conv3_conv3/bn2 0=24 1=1 ReLU relu3 1 1 conv3_conv3/bn2 conv3_relu3 Convolution conv4 1 1 conv3_relu3 conv4 0=32 1=3 2=1 3=2 4=1 5=1 6=6912 BatchNorm conv4/bn1 1 1 conv4 conv4_conv4/bn1 0=32 Scale conv4/bn2 1 1 conv4_conv4/bn1 conv4_conv4/bn2 0=32 1=1 ReLU relu4 1 1 conv4_conv4/bn2 conv4_relu4 Convolution conv5 1 1 conv4_relu4 conv5 0=48 1=3 2=1 3=1 4=0 5=1 6=13824 BatchNorm conv5/bn1 1 1 conv5 conv5_conv5/bn1 0=48 Scale conv5/bn2 1 1 conv5_conv5/bn1 conv5_conv5/bn2 0=48 1=1 ReLU relu5 1 1 conv5_conv5/bn2 conv5_relu5 Convolution conv6_3 1 1 conv5_relu5 conv6_3 0=48 1=1 2=1 3=1 4=0 5=1 6=2304 BatchNorm conv6_3/bn1 1 1 conv6_3 conv6_3_conv6_3/bn1 0=48 Scale conv6_3/bn2 1 1 conv6_3_conv6_3/bn1 conv6_3_conv6_3/bn2 0=48 1=1 ReLU relu6_3 1 1 conv6_3_conv6_3/bn2 conv6_3_relu6_3 Convolution conv7_3 1 1 conv6_3_relu6_3 conv7_3 0=64 1=3 2=1 3=1 4=0 5=1 6=27648 BatchNorm conv7_3/bn1 1 1 conv7_3 conv7_3_conv7_3/bn1 0=64 Scale conv7_3/bn2 1 1 conv7_3_conv7_3/bn1 conv7_3_conv7_3/bn2 0=64 1=1 ReLU relu7_3 1 1 conv7_3_conv7_3/bn2 conv7_3_relu7_3 InnerProduct fc3 1 1 conv7_3_relu7_3 fc3 0=256 1=1 2=1638400 ReLU relu8_3 1 1 fc3 fc3_relu8_3 Dropout drop3 1 1 fc3_relu8_3 fc3_drop3 InnerProduct fc_live 1 1 fc3_drop3 live 0=2 1=1 2=512 Softmax softmax 1 1 live live_softmax 0=0 1=1
|
第一行【7767517】版本信息
第二行【79 87】layer数及blob数 layer数指:input、Convolution、BatchNorm、ReLU。。。 等数目
卷积层调用的模型导入函数是:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| int Convolution::load_param(const ParamDict& pd) { num_output = pd.get(0, 0); kernel_w = pd.get(1, 0); kernel_h = pd.get(11, kernel_w); dilation_w = pd.get(2, 1); dilation_h = pd.get(12, dilation_w); stride_w = pd.get(3, 1); stride_h = pd.get(13, stride_w); pad_left = pd.get(4, 0); pad_right = pd.get(15, pad_left); pad_top = pd.get(14, pad_left); pad_bottom = pd.get(16, pad_top); pad_value = pd.get(18, 0.f); bias_term = pd.get(5, 0); weight_data_size = pd.get(6, 0); int8_scale_term = pd.get(8, 0); activation_type = pd.get(9, 0); activation_params = pd.get(10, Mat()); impl_type = pd.get(17, 0);
if (int8_scale_term) { use_int8_inference = true; }
return 0; }
|