[TOC]

概述

我们知道现行回归可以用于预测多少的问题。 比如预测房屋被售出价格,或者棒球队可能获得的胜场数,又或者患者住院的天数。

事实上,我们也对分类问题感兴趣:不是问“多少”,而是问“哪一个”:

  • 某个电子邮件是否属于垃圾邮件文件夹?
  • 某个用户可能注册不注册订阅服务?
  • 某个图像描绘的是驴、狗、猫、还是鸡?
  • 某人接下来最有可能看哪部电影?

通常,机器学习实践者用分类这个词来描述两个有微妙差别的问题: 1. 我们只对样本的“硬性”类别感兴趣,即属于哪个类别; 2. 我们希望得到“软性”类别,即得到属于每个类别的概率。 这两者的界限往往很模糊。其中的一个原因是:即使我们只关心硬类别,我们仍然使用软类别的模型。

分类问题

我们从一个图像分类问题开始。 假设每次输入是一个2×2的灰度图像。 我们可以用一个标量表示每个像素值,每个图像对应四个特征x1,x2,x3,x4。 此外,假设每个图像属于类别“猫”,“鸡”和“狗”中的一个。

接下来,我们要选择如何表示标签。 我们有两个明显的选择:最直接的想法是选择y∈{1,2,3}

其中整数分别代表狗猫鸡{狗,猫,鸡}。 这是在计算机上存储此类信息的有效方法。 如果类别间有一些自然顺序, 比如说我们试图预测婴儿儿童青少年青年人中年人老年人{婴儿,儿童,青少年,青年人,中年人,老年人}, 那么将这个问题转变为回归问题,并且保留这种格式是有意义的。

但是一般的分类问题并不与类别之间的自然顺序有关。 幸运的是,统计学家很早以前就发明了一种表示分类数据的简单方法:独热编码(one-hot encoding)。 独热编码是一个向量,它的分量和类别一样多。 类别对应的分量设置为1,其他所有分量设置为0。 在我们的例子中,标签y将是一个三维向量, 其中(1,0,0)对应于“猫”、(0,1,0)对应于“鸡”、(0,0,1)对应于“狗”:
$$
y \in {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
$$

网络架构

为了估计所有可能类别的条件概率,我们需要一个有多个输出的模型,每个类别对应一个输出。 为了解决线性模型的分类问题,我们需要和输出一样多的仿射函数(affine function)。 每个输出对应于它自己的仿射函数。 在我们的例子中,由于我们有4个特征和3个可能的输出类别, 我们将需要12个标量来表示权重(带下标的w), 3个标量来表示偏置(带下标的b)。 下面我们为每个输入计算三个未规范化的预测(logit):o1、o2和o3。
$$
\begin{split}\begin{aligned}
o_1 &= x_1 w_{11} + x_2 w_{12} + x_3 w_{13} + x_4 w_{14} + b_1,\
o_2 &= x_1 w_{21} + x_2 w_{22} + x_3 w_{23} + x_4 w_{24} + b_2,\
o_3 &= x_1 w_{31} + x_2 w_{32} + x_3 w_{33} + x_4 w_{34} + b_3.
\end{aligned}\end{split}
$$
我们可以用神经网络图如下图来描述这个计算过程。 与线性回归一样,softmax回归也是一个单层神经网络。 由于计算每个输出o1、o2和o3取决于 所有输入x1、x2、x3和x4, 所以softmax回归的输出层也是全连接层。

softmaxreg.svg

为了更简洁地表达模型,我们仍然使用线性代数符号。 通过向量形式表达为o=Wx+b, 这是一种更适合数学和编写代码的形式。 由此,我们已经将所有权重放到一个3×4矩阵中。 对于给定数据样本的特征x, 我们的输出是由权重与输入特征进行矩阵-向量乘法再加上偏置b得到的。